nfrey213@gmail.com • (636) 634-7386 • www.linkedin.com/in/ncfrey/ • https://ncfrey.github.io/

Experience

Prescient Design, Genentech, New York, NY

Team Lead, Foundation Models for Drug Discovery, and Principal Machine Learning Scientist 2024 - Present

- Led a multidisciplinary project team of 15 scientists and engineers to conduct collaborative research on biological foundation models and antibody lead identification and optimization; managed a \$1M+ R&D budget; established and executed on objectives and key results enabling the introduction of AI scientists as team leads on active drug discovery portfolio projects, scaling from 0% to >25% of the asset portfolio.
- Set research and product directions, technical roadmaps (1-2 year), and long-term (3-5 year) AI strategy for Roche and Genentech, impacting 5 major computational teams, 100+ scientists and engineers, and \$50M+ annual investment in compute resources and FTE.
- Established and led the Foundation Models for Drug Discovery team, a Roche-wide effort to develop and apply 1B+ parameter large language models, novel architectures, and agentic workflows, spanning portfolio strategy, target assessment, lead molecule identification, lead optimization, pre-clinical research, and clinical trial design, impacting 10+ large (biologics) and small molecule programs.
- Filed 4 provisional patents spanning novel approaches to machine learning for drug discovery, enabling >15,000x reduction in compute costs for developing foundation models via efficient training techniques, 10-100x binding affinity optimization improvements compared to state-of-the-art experimental lab techniques, *de novo* binder design with state-of-the-art binding rates (>70%), and integrated ML systems for autonomous multi-property optimization of therapeutic molecules with 80% reduction in R&D material costs.
- Led a research group of 3 machine learning scientists and 3 graduate student interns/contractors to conduct high-impact research in ML and biology and transform the drug discovery process with AI and ML.
- Won the first ever Best Paper Award (top <0.1% of submissions) for machine learning and biology at a major machine learning conference, the ICLR 2024 Outstanding Paper Award for innovative work on generative modeling and biology; additionally received 2 main conference oral Spotlight awards (ICLR and NeurIPS, top <1.5% of submissions) and 6 conference workshop Spotlight awards (NeurIPS, ICLR, ICML, top 10% of submissions).

Senior Machine Learning Scientist

- Established \$2M+ annual collaboration between NVIDIA and Genentech, resulting in acceleration of model training (>2x) and inference (>3-5x) of production models in usage across >25% of the asset portfolio.
- Led NVIDIA-Genentech joint project team on Protein Language Models, resulting in new state-of-the-art biological foundation models with 1,000x acceleration of molecular property prediction compared to traditional computational methods.
- Invented a state-of-the-art ML method for antibody binder design, yielding >95% novel (*de novo*) antibodies and 30-75% binding rates to therapeutically relevant targets.
- Co-led a working group on Iterative Design and Active Learning to establish best practices for ML-driven drug design across 3 teams at Genentech and 20+ computational scientists.
- Communicated impactful findings in 2 peer-reviewed ML conference proceedings and 10 external invited talks at international forums for machine learning and biology research.

Massachusetts Institute of Technology, Cambridge, MA

Postdoctoral Associate, Lincoln Laboratory Supercomputing Center and AI Technology

• Published the first research paper investigating scaling phenomena in neural networks for chemistry, molecular design, and molecular dynamics; built 1B+ parameter foundation models for drug discovery and showed the existence of empirical scaling laws similar to those observed in large language models.

2021 - 2022

2022 - 2024

- Developed benchmarks and tools for efficiently scaling graph neural networks and large language models for chemistry and drug design, performing 3,400+ neural network training runs on up to 424 GPUs (53 nodes) on the MIT SuperCloud cluster.
- Discovered efficient training techniques that were implemented across MIT's supercomputing resources, reducing power consumption for deep learning training by 20%.

University of Pennsylvania, Philadelphia, PA

National Defense Science & Engineering Graduate Fellow

- Performed multiscale modeling of electronic and energy materials with density functional theory, molecular dynamics, and finite element analysis; proposed simple phenomenological models supported by first-principles calculations to explain material properties.
- Developed a semi-supervised machine learning framework to predict synthesizability of novel materials and identified over 100 promising theoretical materials for synthesis.
- Deployed deep transfer learning and machine learning to predict optimal materials for information processing.
- Communicated findings in 6 first-author and 2 co-first-author publications in leading journals, and 5 national conference presentations.

DeepChem, Stanford, CA

Developer

- Developed open-source deep learning libraries for computational drug discovery.
- Expanded and standardized the MoleculeNet benchmarking suite for molecular machine learning.
- Built molecular generative models with normalizing flows for multi-objective optimization of druglike molecules.
- Refined methods for featurizing protein-ligand complexes and predicting binding energies.

Lawrence Berkeley National Laboratory, Berkeley, CA

Affiliate Scientist, Materials Project

- Built a high-throughput, automated computational workflow for studying novel materials with density functional theory.
- Identified 18 potential quantum materials with high-throughput virtual screening.
- Integrated workflow with Materials Project database, one of the largest online repositories of materials simulation data with over 560,000 users.

Education

University of Pennsylvania, Philadelphia, PA
PhD Materials Science & Engineering
Thesis: "Creation and control of quantum states in layered materials"
Advisor: Vivek B. Shenoy, Director of NSF Center for Engineering Mechanobiology

Boston University, Boston, MA	2016
MA Physics	

University of Missouri, Columbia, MO 2014 BSc Physics and Mathematics, Summa Cum Laude & Phi Beta Kappa BSc Honors Thesis: "Automatic oligomeric state analysis of SecYEG in atomic force microscopy images"

2016 - 2021

2020 - 2022

2019 - 2020

2021

Select Awards

- NeurIPS MLSB Oral Presentation Spotlight, *Tokenized and Continuous Embedding Compressions of Protein Sequence and Structure*, 2024
- NeurIPS AIDrugX Oral Presentation Spotlight, *LLMs are Highly-Constrained Biophysical Sequence Optimizers*, 2024
- ICML AccMLBio Oral Presentation Spotlight, *Cramming Protein Language Model Training in 24 GPU Hours*, 2024
- ICLR Outstanding Paper Award, Protein Discovery with Discrete Walk-Jump Sampling, 2024
- ICLR Conference Oral Presentation Spotlight, top 1.2% of all submissions, *Protein Discovery with Discrete Walk-Jump Sampling*, 2024
- NeurIPS GenBio Workshop Oral Presentation Spotlight, *Protein Discovery with Discrete Walk-Jump Sampling*, 2023
- Machine Learning for Computational Biology Oral Presentation Spotlight, *Protein Discovery with Discrete Walk-Jump Sampling*, 2023
- NeurIPS Conference Spotlight, Protein Design with Guided Discrete Diffusion, 2023
- ICLR Physics for Machine Learning Spotlight, Protein Discovery with Discrete Walk-Jump Sampling, 2023
- S.J. Stein Prize for Best PhD Dissertation on Electronic Materials, University of Pennsylvania, 2021
- Certificate of Advanced Scientific Computing, Penn Institute for Computational Science, 2021
- Merck Quantitative Biosciences Career Exploration Fellowship, University of Pennsylvania, 2020
- Geoffrey Belton Memorial Fellowship, University of Pennsylvania, 2019
- National Defense Science & Engineering Graduate Fellowship, Department of Defense, 2016
- Materials Science & Engineering Fellowship, University of Pennsylvania, 2016
- Dean's Fellowship, Boston University, 2016
- Dean's Award, Boston University, 2014
- Student Undergraduate Lab Internship, Brookhaven National Laboratory, 2014
- Howard Hughes Medical Institute Fellowship, University of Missouri, 2013
- Physics Leaders Meeting Undergraduate Research Prize, University of Missouri, 2012
- Eagle Scout, Boy Scouts of America, 2010

Conference Proceedings

- 1. Ismail, Aya Abdelsalam, ... Frey NC**. *Concept Bottleneck Language Models for Protein Design*. International Conference on Learning Representations (ICLR, 2025).
- 2. Frey NC*, Berenberg D*, Zadorozhny K, Kleinhenz J, Lafrance-Vanasse J, Hotzel I, Wu Y, Ra S, Bonneau R, Cho K, Loukas A. *Protein Discovery with Discrete Walk-Jump Sampling*. International Conference on Learning Representations (ICLR, 2024).
- **3**. Gruver N*, Stanton S*, **Frey NC**, Rudner TG, Hotzel I, Lafrance-Vanasse J, Rajpal A, Cho K, Wilson AG. *Protein Design with Guided Discrete Diffusion*. **Conference on Neural Information Processing Systems** (NeurIPS, 2023).
- 4. **Frey NC**, Li B, McDonald J, Zhao D, Jones M, Bestor D, Tiwari D, Gadepally V, Samsi S. *Benchmarking resource usage for efficient distributed deep learning*. **IEEE High Performance Extreme Computing Conference** (HPEC, 2022).
- * Denotes equal contribution
- ** Denotes senior authorship

Select Journal Publications

- 1. Lu AX, Yan W, Yang KK, Gligorijevic V, Cho K, Abbeel P, Bonneau R, Frey NC**. *Tokenized and Continuous Embedding Compressions of Protein Sequence and Structure*. Cell Patterns (2025).
- 2. Frey NC, Soklaski R, Axelrod S, Samsi S, Gomez-Bombarelli R, Coley C, Gadepally V. *Neural scaling of deep chemical models*. Nature Machine Intelligence (2023).
- 3. Price CC, Singh A, **Frey NC**, Shenoy VB. *Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy*. **Science Advances** (2022).
- 4. Krenn M, Ai Q, Barthel S, Carson N, Frei A, **Frey NC**, Friederich P, Gaudin T, Gayle AA, Jablonka KM, Lameiro RF, ...Aspuru-Guzik A. *SELFIES and the future of molecular string representations*. **Cell Patterns** (2022).
- 5. Aldeghi M, Graff DE, **Frey NC**, Morrone JA, Pyzer-Knapp EO, Jordan KE, Coley CW. *Roughness of molecular property landscapes and its impact on modellability*. **Journal of Chemical Information and Modeling** (2022).
- 6. **Frey NC**, MK Horton, JM Munro, SM Griffin, KA Persson, VB Shenoy. *High-throughput search for magnetic and topological order in transition metal oxides*; **Science Advances** (2020).
- 7. **Frey NC**, D Akinwande, D Jariwala, VB Shenoy. *Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing*; **ACS Nano** (2020).
- 8. **Frey NC**, J Wang, GIV Bellido, B Anasori, Y Gogotsi, VB Shenoy. *Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning*; **ACS Nano** (2019).

Select Conference Workshop Papers

- Lu, A.X., Yan, W., Yang, K.K., Gligorijevic, V., Cho, K., Abbeel, P., Bonneau, R. and Frey, NC**, *Tokenized and Continuous Embedding Compressions of Protein Sequence and Structure*. bioRxiv, pp.2024-08. NeurIPS 2024 MLSB Workshop (2024).
- 2. Chen A, Stanton S, Alberstein R, Watkins A, Bonneau R, Gligorijevic V, Cho K, **Frey NC****, *LLMs are Highly-Constrained Biophysical Sequence Optimizers*. NeurIPS 2024 AIDrugX Workshop (2024).
- 3. **Frey NC**, Joren T, Ismail A, Goodman A, Bonneau R, Cho K, Gligorijevic V. *Cramming Protein Language Model Training in 24 GPU Hours*. bioRxiv. 2024:2024-05. ICML 2024 AccMLBio Workshop (2024).
- 4. Adebayo J, Stanton S, Kelow S, Bonneau R, Gligorijevic V, Cho K, Ra S, **Frey NC****. *Identifying regularization schemes that make feature attributions faithful*. NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development (2023).
- 5. Lee JH, Yadollahpour P, Watkins A, **Frey NC**, Leaver-Fay A, Ra S, Cho K, Gligorijević V, Regev A, Bonneau R. *Equifold: Protein structure prediction with a novel coarse-grained structure representation*, Machine Learning for Structural Biology Workshop, NeurIPS (2022).
- 6. **Frey NC**, Gadepally V, Ramsundar B. Fastflows: *Flow-based models for molecular graph generation*. ELLIS Machine Learning for Molecule Discovery Workshop (2022).
- 7. Frey NC, S Samsi, J McDonald, L Li, CW Coley, V Gadepally. *Scalable Geometric Deep Learning on Molecular Graphs*; NeurIPS 2021 AI for Science Workshop (2021).
- 8. Frey NC, S Samsi, B Ramsundar, CW Coley, V Gadepally. *Bringing Atomistic Deep Learning to Prime Time*; NeurIPS 2021 AI for Science Workshop (2021).

Invited Talks

• *Scalable Active Learning for Therapeutic Antibody Design*, PEGS Europe, Barcelona, Spain, November 2024.

- *Cramming Protein Language Model Training in 24 GPU Hours*, Oral Spotlight Talk, AccMLBio Workshop, ICML, Vienna, Austria, July 2024.
- *Protein Discovery with Discrete Walk Jump Sampling*, Outstanding Paper and Oral Spotlight Talk, ICLR 2024, Vienna, Austria, May 2024.
- "Lab-in-the-loop" drug discovery and design, PepTalk, San Diego, CA, January 2024.
- *Protein Discovery with Discrete Walk Jump Sampling*, Spotlight Talk, GenBio Workshop, NeurIPS, New Orleans, LA, December 2023.
- *Protein Discovery with Discrete Walk Jump Sampling*, Machine Learning for Computational Biology Workshop, Seattle, WA, December 2023.
- "Lab-in-the-loop" drug discovery and design, PEGS Europe, Lisbon, Portugal, November 2023.
- *Protein Discovery with Discrete Walk Jump Sampling*, ML for Protein Engineering Seminar Series, September 2023.
- *Walk-Jump Sampler: the Mallet of Prescient Design*, Prescient Design/LMDD Fall Workshop, South San Francisco, CA, September 2023.
- *"Lab-in-the-loop" drug discovery and design*, Accelerate Conference, University of Toronto, Toronto, CA, August 2023.
- "Lab-in-the-loop" drug discovery and design, LightningAI, New York, NY, April 2023.
- *Learning protein family manifolds with smoothed energy-based models*, Spotlight talk, Physics4ML Workshop, International Conference on Learning Representations (ICLR), April 2023.
- Neural Scaling of Deep Chemical Models, Fordham University, New York, NY, November 2022.
- *Neural Scaling of Deep Chemical Models*, Pre-training Workshop, International Conference on Machine Learning (ICML), July 2022.
- *Scalable Geometric Deep Learning on Molecular Graphs*, Molecular Modeling and Drug Discovery Symposium, Valence Discovery and Mila Quebec AI Institute, February 2022.
- Integrating High-Throughput Computing and Machine-Learning Enabled Atomistic Design, Air Force Research Lab, November 2021.
- *Machine Learning in Materials Science and Chemistry*, US Patent and Trademark Office, Alexandria, VA, February 2020.

Contributed Talks and Poster Presentations

- *Molecular Discovery and Design with Machine Learning* (poster), Genentech Group Leader Offsite, Napa, CA, June 2023.
- *Machine Learning-Enabled Design of Point Defects in 2D Materials,* American Physical Society March Meeting, March 2021.
- *Flow-Based Models for Active Molecular Graph Generation* (virtual poster), Machine Learning for Molecules Workshop, NeurIPS, December 2020.
- *High-throughput Search for Magnetic and Topological Order in Transition Metal Oxides*, American Physical Society March Meeting, March 2020.
- Engineering Zero-Dimensional Quantum Confinement in Transition Metal Dichalcogenide Heterostructures, Society of Engineering Science Technical Meeting, St. Louis, MO, October 2019.
- Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning, Materials Research Society Spring Meeting, Phoenix, AZ, April 2019.

Professional Activities & Service

- Peer reviewer for NeurIPS, ICML, ICLR, TMLR, Nature Biotechnology, Nature Communications
- Area chair for Generative and Experimental Perspectives for Biomolecular Design ICLR Workshop